Automorphisms of Rational Manifolds of Positive Entropy with Siegel Disks

نویسنده

  • KEIJI OGUISO
چکیده

Using McMullen’s rational surface automorphisms, we construct projective rational manifolds of higher dimension admitting automorphisms of positive entropy with arbitrarily high number of Siegel disks and those with exactly one Siegel disk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Rational Surface Automorphisms: Rotation Domains

§0. Introduction. Let X denote a compact complex surface, and let f be a (biholomorphic) automorphism of X . The regular part of the dynamics of f occurs on the Fatou set F(f) ⊂ X , where the forward iterates are equicontinuous. As in [BS, U], we call a Fatou component U ⊂ F(f) a rotation domain of rank d if f |U generates a (real torus) T-action on U . In dimension 1, rotation domains correspo...

متن کامل

A pr 2 00 8 Continuous Families of Rational Surface Automorphisms with Positive Entropy

§0. Introduction. Cantat [C1] has shown that if a compact projective surface carries an automorphism of positive entropy, then it has a minimal model which is either a torus, K3, or rational (or a quotient of one of these). It has seemed that rational surfaces which carry automorphisms of positive entropy are relatively rare. Indeed, the first infinite family of such rational surfaces was found...

متن کامل

Automorphisms of Hyperkähler Manifolds in the View of Topological Entropy

First we show that any group of automorphisms of null-entropy of a projective hyperkähler manifold M is almost abelian of rank at most ρ(M) − 2. We then characterize automorphisms of a K3 surface with nullentropy and those with positive entropy in algebro-geometric terms. We also give an example of a group of automorphisms which is not almost abelian in each dimension.

متن کامل

2 7 Fe b 20 09 Continuous Families of Rational Surface Automorphisms with Positive Entropy Eric Bedford

§0. Introduction. Cantat [C1] has shown that if a compact projective surface carries an automorphism of positive entropy, then it has a minimal model which is either a torus, K3, or rational (or a quotient of one of these). It has seemed that rational surfaces which carry automorphisms of positive entropy are relatively rare. Indeed, the first infinite family of such rational surfaces was found...

متن کامل

Dynamics on K3 surfaces: Salem numbers and Siegel disks

This paper presents the first examples of K3 surface automorphisms f : X → X with Siegel disks (domains on which f acts by an irrational rotation). The set of such examples is countable, and the surface X must be non-projective to carry a Siegel disk. These automorphisms are synthesized from Salem numbers of degree 22 and trace −1, which play the role of the leading eigenvalue for f∗|H2(X). The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009